York Episodic Memory Labmain menu

Home Lab Members Research Publications Contact

Who we are

We are a group of cognitive neuroscientists based in the Department of Psychology and the York Neuroimaging Centre at the University of York, UK.

What we do

Memory is a fundamental process that allows us to make sensible predictions about what might happen in the future based on past experience. Put simply, it stops us repeating our mistakes.

We are interested in how the brain remembers past events and how this shapes behaviour in the present. We use experimental psychology, virtual reality, computational modelling, and brain imaging to understand these processes in the healthy human brain. We also test patients with memory deficits to understand how these processes can become impaired.

Why we do it

We aim to apply what we learn in the lab to the real world. This can be in an educational setting, where our experiments can inform how information in best learnt and retained, and in a medical setting, where understanding the breakdown of memory processes can shape interventions to help specific patients function more effectively in the real world.

We also believe in the value of basic science in and of itself. Unravelling the complexities of the human brain is inherently valuable to society regardless of translation. Ultimately, we do what we do because we are fascinated by the brain.

Lab members

Principal Investigator


Aidan Horner

Aidan James Horner

Aidan completed his BSc in psychology and MSc in cognitive neuroscience at the University of York, UK. He then moved to Cambridge, UK to carry out his PhD at the MRC Cognition and Brain Sciences Unit. He held postdoctoral positions at the Otto-von-Guericke University, Magdeburg, Germany and University College London, UK. He returned to the University of York in 2016 as a lecturer in psychology and set up the York Episodic Memory Lab.

His research uses experimental psychology, neuropsychology, brain imaging and computational modelling to understand how we retain and retrieve information over long timescales. One particular interest is our ability to subjectively re-experience previous life events, and how the hippocampus and neocortex interact to allow for this recollective experience.


aidan.horner@york.ac.uk

Google Scholar

Department of Psychology Profile

University of York Research Database Profile

Postdocs & PhDs


Sam

Samuel Charles Berens

Postdoctoral Research Associate

Sam completed his BSc in psychology and music technology at the University of Keele before obtaining an MSC and PhD in cognitive neuroscience at the University of Sussex. His postdoctoral research is focussed on how we extract patterns across multiple events, and how this influences decision making.


sam.berens@york.ac.uk

Sam's website


Bardur

Bardur Hofgaard Joensen

PhD Student

Bardur completed his BSc in psychology at the University of Aberdeen, UK and MSc in cognitive neuroscience at Univerisity College London, UK. His PhD research is focussed on the role of sleep in generalising across related episodic memories.


bhj501@york.ac.uk

Research


We are interested in how our memory of the past shapes our decisions in the present. We use a variety of techniques to understand the neural basis of memory-guided decision-making in the healthy human brain, and how it breaks down in specific patient populations. Below are examples of projects both past and present.

Pattern completion


PatternCompletion

Pattern completion allows us to retrieve a complete memory trace when only presented with a partial cue. For example, we might remember all the details of a social event with a friend when presented with only a picture the friend. This project explores this pattern completion process for complex episodic events. It also focusses on the roles of the hippocampus and neocortex during this process, and how they interact. Ultimately, we are interested in how the brain supports our ability to subjectively re-experience previous life events.

Grid cells


GridCells

Grid cells are a type of spatially modulated neuron found in both rodents and humans. They fire in multiple locations in a given environment in a highly regular fashion. This regularity allows us to use non-invasive brain imaging to measure a 'grid-like' signal in the human brain. Here we are interested in whether grid cells are used for more than spatial navigation. For example, do we use grid cells when we close our eyes and imagine moving through space?

Spatial boundaries


SpatialBoundaries

Memories of past events are often subjectively discrete in nature. We remember what happened in a specific period that spans both time and space. What defines the boundaries of this event? Here we are interested in the role of spatial boundaries in segmenting our continuous sensory experience into more discrete 'events' that form the basis of our memories of the past.

Horner, A.J., Bisby, J., Lin, W-J., & Burgess, N. (2015) Evidence for holistic episodic recollection via hippocampal pattern completion, Nature Communications, 6:7462. [PubMed] [PDF]

Horner, A.J., Bisby, J.A., Zotow, E., Bush, D., & Burgess, N., (2016) Grid-like processing of imagined navigation, Current Biology, 26, 842-847. [PubMed] [PDF]

Horner, A.J., Bisby, J.A., Wang, A., Bogus, K., & Burgess, N., (2016) The role of spatial boundaries in shaping long-term event representations, Cognition, 154, 151-164. [PubMed] [PDF]

Publications

2017

Horner, A.J. & Doeller, C.F., (2017) Plasticity of hippocampal memories in humans, Current Opinion in Neurobiology, 43, 102-109. [PubMed] [PDF]

Kaplan, R., Bush, D., Bisby, J.A., Horner, A.J., Meyer, S.S., & Burgess, N., (2017) Medial prefrontal-medial temporal theta phase coupling in dynamic spatial imagery, Journal of Cognitive Neuroscience, 154, 151-164. [PubMed] [PDF]

2016

Horner, A.J., Bisby, J.A., Wang, A., Bogus, K., & Burgess, N., (2016) The role of spatial boundaries in shaping long-term event representations, Cognition, 154, 151-164. [PubMed] [PDF]

Horner, A.J., Bisby, J.A., Zotow, E., Bush, D., & Burgess, N., (2016) Grid-like processing of imagined navigation, Current Biology, 26, 842-847. [PubMed] [PDF]

Horner, A.J. (2016) Retrieval of bindings between task-irrlevevant stimuli and responses can facilitate behaviour under conditions of high response certainty, Quarterly Journal of Experimental Psychology, 69(3), 561-573. [PubMed] [PDF]

Bisby, J.A., Horner, A.J., Horlyck, L.D., & Burgess, N. (2016) Opposing effects of negative emotion on item and associative memory are mediated by amygdalar and hippocampal activity, Social Cognitive and Affective Neuroscience, 69(3), 561-573. [PubMed] [PDF]

Lin, W-J., Horner, A.J., & Burgess, N. (2016) Ventromedial prefrontal cortex: adding value to autobiographical memories, Scientific Reports, 6:28630. [PubMed] [PDF]

2015

Horner, A.J., Bisby, J., Bush, D., Lin, W-J., & Burgess, N. (2015) Evidence for holistic episodic recollection via hippocampal pattern completion, Nature Communications, 6:7462. [PubMed] [PDF]

Frings, C., Moeller, B., & Horner, A.J. (2015) On the durability of bindings between responses and irrelevant stimuli, Acta Psychologica, 161, 73-78. [PubMed] [PDF]

Bird, C., Keidel, J.L., Ing, L.P., Horner, A.J. & Burgess, N. (2015) Consolidation of complex events via reinstatement in posterior cingulate cortex, Journal of Neuroscience, 35(43), 14426-14434. [PubMed] [PDF]

Lin, W-J., Horner, A.J., Bisby, J., & Burgess, N. (in press) Medial prefrontal cortex: adding value to imagined scenarios, Journal of Cognitive Neuroscience, 27(10), 1957-1967. [PubMed] [PDF]

2014

Horner, A.J., & Burgess, N. (2014) Pattern completion in multi-element event engrams, Current Biology, 24(9), 988-992. [PubMed] [PDF]

Henson, R.N., Eckstein, D., Waszak, F., Frings, C., & Horner, A.J. (2014) Stimulus-response bindings in priming, Trends in Cognitive Sciences, 18(7), 376-384. [PubMed] [PDF]

Kaplan, R., Horner, A.J., Bandettini, P.A., Doeller, C.F., & Burgess, N. (2014) Human hippocampal processing of environmental novelty during spatial navigation, Hippocampus, 24(7), 740-750. [PubMed] [PDF]

Bird, C., Berens, S.C., Horner, A.J., Franklin, A. (2014) Categorical encoding of color in the brain, Proceedings of the National Academy of Sciences, 111(12), 4590-4595. [PubMed] [PDF]

Jafarpour, A., Fuentemilla, L., Horner, A.J., Penny, W., & Duzel, E. (2014) Replay of very early encoding representations during recollection, Journal of Neuroscience, 34(1), 242-248. [PubMed] [PDF]

2013

Horner, A.J., & Burgess, N. (2013) The associative structure of memory for multi-element events, Journal of Experimental Psychology: General, 142(4), 1370-1383. [PubMed] [PDF]

Jafarpour, A.*, Horner, A.J.*, Fuentemilla, L., Penny, W. & Duzel, E., (2013) Decoding oscillatory representations and mechanisms in memory, Neuropsychologia, 51(4), 772-780. [PubMed] [PDF] *Joint first authors

Guitart-Masip, M., Barnes, G., Horner, A.J., Dolan, R.J., & Duzel, E. (2013) Synchronization of medial temporal lobe and prefrontal rhythms in human decision-making, Journal of Neuroscience, 33(2), 442-451. [PubMed] [PDF]

2012

Horner, A.J., Gadian, D.G., Fuentemilla, L., Jentschke, S., Vargha-Khadem, F. & Duzel, E., (2012) A rapid, hippocampus-dependent, item-memory signal that initiates context memory in humans, Current Biology, 22(24), 2369-2374. [PubMed] [PDF]

Shtyrov, Y., Smith, M., Horner, A.J., Henson, R.N., Nathan, P., & Pulvermüller, F., (2012) Attention to language: Novel MEG paradigm for registering involuntary language processing in the brain, Neuropsychologia, 50(11), 2605-2616. [PubMed] [PDF]

Horner, A.J., (2012) Focussing on the frontal cortex (peer commentary on journal article "Repetition Priming and Repetition Suppression: A Case for Enhanced Efficiency Through Neural Synchronization"), Cognitive Neuroscience, 3(3-4), 246-247. [PubMed] [PDF]

Horner, A.J., & Henson, R.N., (2012) Incongruent abstract stimulus-response bindings result in response interference: fMRI and EEG evidence from visual object classification priming, Journal of Cognitive Neuroscience, 24(3), 760-773.[PubMed] [PDF]

Horner, A.J., & Henson, R.N., (2012) Priming, response learning and repetition suppression, In N.M. Seel (Ed), Encyclopedia of the Sciences of Learning, Springer. [PDF]

2011

Horner, A.J., & Henson, R.N., (2011) Stimulus-Response bindings code both abstract and specific representations of stimuli: evidence from a classification priming design that reverses multiple levels of response representations, Memory & Cognition, 39(8), 1457-1471.[PubMed] [PDF]

Horner, A.J., & Henson, R.N., (2011) Repetition suppression in occipitotemporal cortex despite negligible visual similarity: evidence for post-perceptual processing?, Human Brain Mapping, 32(10), 1519-1534.[PubMed] [PDF]

2009

Horner, A.J., & Henson, R.N., (2009) Bindings between stimuli and multiple response codes dominate long-lag repetition priming in speeded classification tasks, Journal of Experimental Psychology: Learning Memory and Cognition, 35(3), 757-779.[PubMed] [PDF]

Horner, A.J., & Andrews, T.J., (2009) Linearity of the fMRI response in category-selective regions of the human visual cortex, Human Brain Mapping, 30(8), 2628-2640.[PubMed] [PDF]

2008

Horner, A.J., & Henson, R.N., (2008) Response learning, priming and repetition suppression, Neuropsychologia, 46, 1979-1991.[PubMed] [PDF]

Aidan Horner's PhD thesis

The role of stimulus-response bindings in priming: multiple routes and multiple stages [PDF]

Contact

Dr Aidan J Horner

Department of Psychology

University of York

York

YO10 5DD

United Kingdom


Telephone: 01904324603

Email: aidan.horner@york.ac.uk

Twitter: @aidanhorner